Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pengying Zhao,^a Qiyun Shao,^a Weiyi Zhou,^b Jie Li,^a Ming Lu^c and Chunbao Li^a*

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, ^bAnalytical Center, Tianjin University, Tianjin 300072, People's Republic of China, and ^cSchool of Electronic Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lichunbaosyn@sohu.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.036 wR factor = 0.142 Data-to-parameter ratio = 9.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Hydroxy-1-phenylethanone

The non-hydrogen skeleton of the title compound, $C_8H_8O_2$, is planar. The torsion angles HO-C-C=O and O=C-C(Ph)-C(Ph) are -0.9 (4) and 6.0 (4)°, respectively. The hydroxyl group participates in a bifurcated hydrogen bond, giving rise to infinite chains extended along the *b* axis.

Received 15 November 2004 Accepted 10 January 2005 Online 22 January 2005

Comment

Although the crystal structure of a Ca²⁺ complex of 2hydroxy-1-phenylethanone, (I), has been reported (Doxsee *et al.*,1993), the structure of the ligand itself remained unknown. As shown in Fig. 1, the molecule of (I), excluding H atoms, is planar; the torsion angles HO-C-C=O and O=C-C(Ph)-C(Ph) are -0.9 (4) and 6.0 (4)°, respectively. The hydroxyl group participates in a bifurcated hydrogen bond involving both hydroxyl and carbonyl O atoms of the neighbouring molecule as acceptors (Table 2). These hydrogen bonds give rise to infinite chains extended along the *b* axis of the crystal structure (Fig. 2).

Experimental

The title compound was prepared according to known procedures (Yadav *et al.*, 2003; Muthusamy *et al.*, 2002) and crystallized from ethyl acetate and petroleum ether (m.p.: 361 K). IR (KBr, ν , cm⁻¹): 3430, 3391, 1690, 1683; ¹H NMR (CDCl₃): δ 7.94–7.49 (*m*, 5H), 4.88 (*d*, 2H), 3.50 (*t*, 1H).

Crystal data	
$C_8H_8O_2$	Mo $K\alpha$ radiation
$M_r = 136.14$	Cell parameters from 1318
Orthorhombic, $P2_12_12_1$	reflections
a = 4.8223 (15) Å	$\theta = 3.2-23.5^{\circ}$
b = 5.4732 (16) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 25.484 (7) Å	T = 293 (2) K
V = 672.6 (3) Å ³	Block, colourless
Z = 4	$0.20 \times 0.16 \times 0.12 \text{ mm}$
$D_x = 1.344 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART CCD area-detector	650 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 26.5^{\circ}$
Absorption correction: none	$h = -6 \rightarrow 4$
3890 measured reflections	$k = -6 \rightarrow 5$
855 independent reflections	$l = -32 \rightarrow 31$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.036$	independent and constrained
$wR(F^2) = 0.142$	refinement
S = 1.23	$w = 1/[\sigma^2(F_o^2) + (0.0813P)^2]$
855 reflections	where $P = (F_o^2 + 2F_c^2)/3$
95 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Selected torsion angles (°).

O2-C1-C2-O1	-0.9 (4)	O2-C1-C2-C3	179.9 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{matrix} O2 - H2 \cdots O1^i \\ O2 - H2 \cdots O2^i \end{matrix}$	0.90 (5) 0.90 (5)	2.16 (5) 2.19 (5)	2.885 (3) 2.960 (2)	137 (4) 143 (3)
Symmetry code: (i)	-1 - r + 1 + v + 1	- 7		

Symmetry code: (i) $-1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

All H atoms bonded to C atoms were included in the refinement in the riding-model approximation, with C-H = 0.93-0.97 Å and $U_{iso}(H) = 1.2U_{ea}(C)$. The hydroxyl H atom was located in a difference Fourier map and refined isotropically [O2-H2 = 0.90 (5) Å]. In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We thank the Tianjin University Young Teacher Foundation for financial support (No. w50501).

References

Bruker (1997). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

- Doxsee, K. M., Ferguson, C. M. & Wash, P. L. (1993). J. Org. Chem. 58, 7557-7561.
- Muthusamy, S., Badu, S. A. & Gunanathan, C. (2002). Synlett, 3, 407-410.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yadav, J. S., Reddy, B. V. S. & Srinivas, M. (2003). Chem. Lett. 32, 1060-1061.